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Linear mixed models (LMMs) and their extensions have been widely used for
high-dimensional genomic data analyses. While LMMs hold great promise for
risk prediction research, the high dimensionality of the data and different effect
sizes of genomic regions bring great analytical and computational challenges.
In this work, we present a multikernel linear mixed model with adaptive lasso
(KLMM-AL) to predict phenotypes using high-dimensional genomic data. We
develop two algorithms for estimating parameters from our model and also
establish the asymptotic properties of LMM with adaptive lasso when only one
dependent observation is available. The proposed KLMM-AL can account for
heterogeneous effect sizes from different genomic regions, capture both additive
and nonadditive genetic effects, and adaptively and efficiently select predictive
genomic regions and their corresponding effects. Through simulation stud-
ies, we demonstrate that KLMM-AL outperforms most of existing methods.
Moreover, KLMM-AL achieves high sensitivity and specificity of selecting pre-
dictive genomic regions. KLMM-AL is further illustrated by an application to
the sequencing dataset obtained from the Alzheimer’s disease neuroimaging
initiative.

K E Y W O R D S

adaptive lasso, high-dimensional sequencing data, linear mixed model, risk prediction

1 INTRODUCTION

Accurate disease risk prediction is an essential step toward precision medicine, an emerging model of healthcare that
tailors treatment strategies based on individuals' profiles.1,2 The successes from genome-wide association studies have
provided insights into the genetic etiology of complex diseases,3,4 which has led to a growing interest in predicting phe-
notypes using genetic variants.5 Although promising, most of the existing models can only explain a small proportion of
disease heritability and thus lack sufficient accuracy for clinical use.6,7

Complex traits are influenced by multiple genetic variants through complex biological pathways, and thus progress
toward accurately predicting phenotypes requires the development of analytical methods that can model all genetic
variants jointly.8-11 Best linear unbiased prediction (BLUP) within the linear mixed model (LMM) framework has long
been considered the method of choice for predicting phenotypes when a large number of genetic variants are jointly
considered.8-10,12-16 It has gained tremendous popularities in recent years.8,9 Instead of estimating the effect size for each
genetic predictor, LMMs attempt to estimate their cumulative effects. At the core, LMM assumes that genetic similar-
ity can lead to the phenotypic similarity, and it encodes genetic effects through a genomic similarity matrix (GSM).8,9
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Specifically, GSM is used to specify the correlation structure of a random effect term in LMMs. Traditionally, in ani-
mal and plant breeding, GSM is estimated using kinship coefficient, and a single random effect term is used to model
genome-wide additive effects.14,15 With the development of high-throughput technologies, GSMs nowadays can be esti-
mated empirically from genome-wide data.8-10,12 The widely used genomic BLUP (gBLUP) specifies a single-random effect
term in LMM with the correlation structure specified according to the GSM estimated directly from genome-wide data.
The implicit assumption for gBLUP is that effect sizes for all genetic variants come from a common Gaussian distribution
and they act in an additive manner.10 MultiBLUP generalizes the gBLUP model by allowing genetic variants located at dif-
ferent genomic regions (eg, coding, intron, and eQTLs) having separate random effects, where the correlation structures
are determined by GSMs calculated from each genomic region.8 MKLMM further generalizes MultiBLUP by constructing
kernel functions under the reproducing kernel Hilbert space (RKHS) to estimate GSMs for each genomic region, where
potential interaction effects within each genomic region can be considered.9

LMM-based methods encode genetic effects from multiple variants through GSMs, which substantially reduces the
data dimension and makes it possible to jointly consider the predictive effects of all genetic variants. However, for
high-dimensional genomic data, most of the measured genetic variants are not related with phenotypes. As noted by
Byrnes et al,17 variable selection algorithms can substantially improve the prediction accuracy when good biological
annotations are absent. Including GSMs estimated from all genomic regions can attenuate the effects of those predictive
regions, and thus reduce the prediction accuracy. Moreover, when the number of random effects is large, the estimation
involves a high-dimensional covariance matrix estimation that can increase computational instability.18 Traditional vari-
able selection methods (eg, Mallow Cp,19 akaike information criterion [AIC],20 and forward/backward/stepwise selection)
suffer from lack of theoretical justification and statistical stability.21 Bayesian information criteria (BIC) and generalized
information criterion (GIC) are consistent variable selection procedures for fixed effects,22-24 but they perform poorly
for selecting random effects.25 Recent work has focused on selecting random effects simultaneously with model estima-
tion. Chen and Dunson26 and Kinney et al27 selected random effects through a hierarchical Bayesian approach. Bondell
et al28 utilized the reparameterized technique proposed by Chen et al and further developed an expectation-maximization
(EM)-algorithm to select random effects based on a penalized likelihood function. Ahn et al29 developed a moment-based
method to select random effects, and Lin30 proposed a two-stage method for random effect selection. However, none of
these methods can be directly applied to LMMs used in genetic research. For standard LMM, there are multiple clusters
(eg, m clusters). It assumes that the outcome vector for each cluster comes from a multivariate normal distribution (eg,
Y i ∼ N(0,𝜮0),∀i ∈ (1, 2,… ,m)), and thus the resulting variance covariance matrix for Y is a block diagonal matrix with
m blocks (ie, 𝚺 = diag(𝚺0)). For LMMs used in genetic research,8,9 the variance-covariance matrix for the outcome vec-
tor Y is of the form 𝚺 =

∑R
r Kr𝜎2

r + 𝜎2
0 I, where Kr represents the GSM estimated directly from the rth genomic region.

Since Kr is usually a dense matrix, the outcome vector Y is a single observation obtained from a multivariate normal
distribution (ie, m = 1). Therefore, the standard asymptotic behaviors established when m → ∞ are not applicable.

Mounting evidences have suggested that epistasis widely exists,31,32 and thus it is crucial to capture the potential inter-
action effects when building prediction models.9,33 However, the vast majority of LMMs assume that genetic variants
influence phenotypes only in an additive manner.8,15,16 A few studies that investigated the effects of interactions (eg, dom-
inant effect,34,35 two-way interactions,36 and high-order interactions using kernels under RKHS37-39) have only achieved
limited successes partially due to the exponentially large search space of interactions and the simple assumption of homo-
geneous effect sizes across the entire genome. The recent proposed MKLMM addresses these limitations by modeling the
high-order interactions within each region using kernels under RKHS and accounting for heterogeneous effects by spec-
ifying multiple random effects for different genomic regions.9 Although it improves the prediction accuracy, it is hard
to prespecify kernels as the genetic architecture of complex diseases is unknown in advance. Moreover, similar to other
LMMs, MKLMM also lacks theoretical justifications for selecting predictive regions, as the number of regions is usually
determined empirically.

In this article, we develop a multikernel linear mixed model with adaptive lasso (KLMM-AL) to address these issues.
The KLMM-AL (i) specifies multiple random effects to allow for heterogeneous effects for different genomic regions,
(ii) allows multiple kernels per genomic region to account for various types of genetic effects, and (iii) establishes the
theoretical justification for selecting predictive regions (ie, selecting random effects from LMM with only one dependent
observation vector). Therefore, the KLMM-AL cannot only account for additive effects and various types of nonadditive
effects, but also select predictive regions efficiently. In the following sections, we will first lay out the details of the proposed
method and its theoretical properties. We will then compare its accuracy with existing widely used methods through
simulation studies and further illustrate the KLMM-AL through an application to a whole-genome sequencing dataset
obtained from the Alzheimer's disease neuroimaging initiative (ADNI).40
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2 METHODS

LMMs and their extensions have been widely used for prediction research with high-dimensional genomic data. For
completeness, we first present the LMMs used for prediction research with genomic data. We will then (i) propose our
method for selecting random effects from high-dimensional genomic data (ie, selecting random effects based on a sin-
gle dependent observation), (ii) describe the computational algorithms, and (iii) derive the asymptotic properties of our
estimators.

2.1 Linear mixed model for risk prediction with high-dimensional genomic data

Utilizing a similar idea used in MultiBLUP8 and MKLMM,9 we first divide the genome into R regions and assume each
region has its own effect size. We model the outcomes within the LMM framework as,

Y = X𝜷 +
R∑
r

gr + e, e ∼ N(0, In𝜎
2
0 ), (1)

where Y is a n × 1 vector of the outcomes, X is a n × p matrix of demographic variables (eg, age and gender), 𝜷 is the effect
size of demographic variables, and gr is the genetic effects from the rth genomic region with gr ∼ N(0,Kr𝜎2

r ).
The covariance matrix of Y is influenced by both Kr and 𝜎2

r (ie, var(Y ) = 𝜎2
0 In +

∑R
r Kr𝜎2

r ), and Kr𝜎2
r encodes the

assumptions of genetic effects of the rth region on the outcome. For example, when Kr = ZrZT
r

pr
with Zr and pr being

genotypes and the number of genetic variants of the rth genomic region, it implicitly assumes that genetic variants located
at the rth region have additive effects on the outcomes and their effect sizes follow a normal distribution (ie, gr = Zr𝜸r, 𝛾r ∼
N(0, 𝜎2

r )). This assumption has been used by both gBLUP and MultiBLUP.8,15 When Kr = Kr
1◦Kr

1 with Kr
1 = ZrZT

r and ◦
being the Hadamard product (ie, gr ∼ N(0,Kr

1◦Kr
1𝜎

2
r )), it implicitly assumes that there are pairwise interactions among

genetic variants on the rth genomic region. Indeed, Kr can be defined using various kernel functions to capture both
linear and nonlinear effects. This idea is similar to that used in MKLMM.9 However, different from MKLMM that assumes
only one specific effect for each genomic region (eg, additive-only or pairwise-interaction-only effects), we allow the same
genetic regions having multiple types of effects. For example, if rth genomic region has both the additive and pairwise
interaction effects, then gr ∼ N(0,Kr

1𝜎
2
r1 + Kr

2𝜎
2
r2). This makes our model much more flexible.

2.2 Penalized maximum likelihood function

The genetic causes for most of complex diseases are unknown in advance, and thus it is quite likely that a substantial
amount of genomic regions and their types of effects (eg, additive) included in the analyses are not disease-related. While
we focus on region selection in the following sections, the same rule can be applied to select the type of effects for each
genomic region. Under model 1, if the rth genetic region is not predictive, and then 𝜎2

r is expected to be zero. Selecting
predictive regions are equivalent to determine which 𝜎2

r is not zero, and thus a natural choice for our model is to use L1
penalty to select random effects.

Let 𝜽R = (𝜎2
1 ,… , 𝜎2

R)
T , 𝜽 = (𝜎2

0 ,𝜽
T
R)T , and 𝝓 = (𝜷T ,𝜽T)T . The log-likelihood function for Equation (1) is

l(𝝓) = −1
2

log |𝚺| − 1
2
(Y − X𝜷)T𝚺−1(Y − X𝜷),𝚺 = In𝜎

2
0 +

R∑
r

Kr𝜎2
r . (2)

The corresponding penalized log-likelihood function with L1 penalty is,

lp(𝝓) = l(𝝓) − 𝜆

p+R+1∑
i=1

𝜔i(|𝜙i|), with 𝜔i =

{
𝜔i, for 𝜙i ∈ 𝜽R

0, otherwise,
(3)

where 𝜆 is a nonnegative regularization parameter, 𝜔i are adaptive weights, typically 𝜔i = 1∕|�̃�i|, with �̃�i denoting an
initial

√
n consistent estimator of𝝓 (eg, the maximum likelihood estimators). It is worth noting that the penalties are only
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put on random effects (ie, 𝜽R) as the focus is on the selection of predictive genomic regions. Maximizing lp(𝝓) can enable
variable selection and parameter estimation simultaneously, as the effects of less important factors are shrunk to zeros
under the L1-penalty. The regularization parameters (𝜆𝜔i) are allowed to vary with the genetic effects, which is similar to
the idea of adaptive lasso.

2.3 Computation of penalized maximum likelihood estimator

2.3.1 EM method

The Cholesky decomposition has been used extensively in LMMs to estimate random effect parameters, but it cannot be
directly used for our model. Cholesky decomposition does not allow for the elimination of random effects, and thus is
incapable of selecting predictive genomic regions. Moreover, kernel matrices Kr used to encode various types of genetic
effects are only guaranteed to be positive semidefinite. To address these challenges, we utilize the same idea used in Chen
and Dunson,26 and factorize Kr of the random effect gr as Kr = (FrDr)(FrDr)T , where Dr is a diagonal matrix and Fr is a
lower triangular matrix with 1s on its diagonal. Both Dr and Fr are unique. Let gr ∼ N(0, 𝜎2

0 In), the model in Equation (1)
can be reparameterized as,

Y = X𝜷 +
R∑
r

drLrgr + e, e ∼ N(0, 𝜎2
0 In), (4)

where dr =
√

𝜎2
r ∕𝜎2

0 and Lr = FrDr.
EM algorithms can be used to estimate parameters in model (4),28 where the complete data comprised of the

observed outcomes (Y) and the unobserved random genetic effects (g = (gT
1 , gT

2 ,… , gT
R)

T). Let d = (d1, d2,… , dR)T and
𝜼 = (𝜷T ,dT)T . Dropping constant terms, the complete data log-likelihood function can be written as,

lc(𝜼|Y , g) = −n(R + 1)
2

log(𝜎2
0) −

1
2𝜎2

0

(||Y − X𝜷 −
R∑
r

drLrgr||2 + gTg

)
, (5)

where ||A||2 is the L2 norm of A. In the E-step, the conditional expectation (denoted as Ep
g|Y ,𝜼

) is computed as
Eg|Y ,𝜼 (lc(𝜼|Y , g)) + 𝜆

∑R
r 𝜔

′
r|dr|, where 𝜔′

r = 1∕d̃r and d̃r is a
√

n consistent estimator of dr. In the M-step, Ep
g|Y ,𝜼

is the
maximized with respective to parameters, which is equivalent to minimize Equation (6).

Qc(𝜼|Y , g) = Eg|Y ,𝜼

(||Y − X𝜷 −
∑

r
drLrgr||2

)
+ 𝜆

R∑
r
𝜔′

r|dr|. (6)

At iteration step t, g|Y , ̂𝜼(t) ∼ N( ̂g(t), ̂U (t)) with mean and variances are given by

ĝ(t) = (I + B(t)LTLB(t))−1(LB(t))T(Y − X𝜷 (t)) (7)

Û (t) = (I + B(t)LTLB(t))−1𝜎
2(t)
0

𝜎
2(t)
0 =

√
(Y − X𝜷 (t))T(LB(t)B(t)LT + I)−1(Y − X𝜷 (t))∕N,

where L = [L1,L2,… ,LR] is a n × (Rn) matrix and B(t) is a (Rn) × (Rn) block diagonal matrix with the rth block equal
to d(t)

r In. For high-dimensional data, inverting a (Rn) × (Rn) matrix is computationally intensive. However, as shown in
Appendix B, gr|Y , 𝜼 is also normally distributed, and the mean and variances are given by,

ĝ(t)
r = d(t)

r LT
r

( M∑
i

K id2(t)
i + IN

)−1(
Y − X𝜷 (t)) (8)

Û (t)
r =

(
In − d2(t)

r LT
r

( M∑
i

K id2(t)
i + IN

)−1

Lr

)
𝜎

2(t)
0 .
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Clearly, for those noise regions (ie, dr = 0), gr = 0 and Ur = In𝜎
2
0 . As most of the genomic regions are not predic-

tive, instead of directly inverting a (Rn) × (Rn) matrix (Equation (7)), we use Equation (8) to compute the conditional
distributions. Therefore, for E-step at iteration step t, the conditional expectation (ie, Equation (6)) is calculated as,

Q(𝜼|𝜼(t)) = Egr|Y ,𝜼(t)

(||Y − X𝜷 −
∑

r
drLrgr||2

)
+ 𝜆

R∑
r
𝜔′

r|dr|. (9)

For M-step at step t, Equation (9) is minimized with respect to 𝜼, which can be achieved using the quadratic pro-
gramming. The details for computing the conditional expectation and performing the M-step are in Appendix B. This EM
algorithm is designed for a fixed value of 𝜆. To choose the tuning parameter 𝜆, we use a BIC,

BIC𝜆 = −2l(�̂�) + log(n) × (df𝜆), (10)

where df𝜆 is the number of nonzero coefficient in �̂�.

2.3.2 Approximate penalized maximum likelihood estimator

The maximization algorithms for linear mixed models are usually based on two basic approaches: the EM and
Newton-Raphson (NR) method.41,42 While the above EM algorithm can be used to estimate parameters, it can be com-
putationally intensive when dealing with high-dimensional data, especially when the tuning parameter 𝜆 also needs to
be selected. To optimize Equation (6), the NR algorithm whose convergence rate is quadratic with good initial values
can also be used. Motivated by the idea used in References 42, and 44, we propose to locally approximate the penalized
log-likelihood function as,

lp(𝝓) ≈ l(𝝓(0)) + l′(𝝓(0))T(𝝓 − 𝝓(0)) + 1
2
(𝝓 − 𝝓(0))Tl′′(𝝓(0))(𝝓 − 𝝓(0)) − 𝜆

R∑
r
𝜔r|𝜙r|. (11)

We set 𝝓(0) to be the maximum likelihood estimator of l(𝝓) that can be obtained by the existing software (eg,
MultiBLUP). It can be shown that the maximizers for Equation (11) can be attained equivalently by using

�̂� = argmin
𝝓

{
1
2
(𝝓 − 𝝓(0))T(−l′′(𝝓(0)))(𝝓 − 𝝓(0)) + 𝜆

R∑
r
𝜔r|𝜙r|

}
. (12)

Clearly, Equation (12) can be efficiently solved by the least angel regression (LAR) algorithm that allows computing of
the entire regularization path very efficiently.45 The regularization parameter 𝜆 is determined according to the BIC type
of criterion specified in Equation (10).

2.4 Asymptotic properties

The asymptotic properties for the maximum likelihood estimators for the traditional LMMs have been well established
under the settings where the number of clusters goes to infinity. However, these results cannot be directly applied to our
model. Kr is usually a dense matrix. Therefore, the outcome vector in our model is a single observation from a multivari-
ate normal distribution (ie, Y n ∼ N(X𝜷,𝚺 = In𝜎

2
0 +

∑R
r Kr𝜎2

r )), and the number of clusters is 1 by design in our model.
Sweeting46 and Mardia and Marshall47 have derived a general result of weak consistency and uniform asymptotic normal-
ity for maximum likelihood estimators based on dependent observations. In our work, we consider the same framework
established by Mardia and Marshal47 and use a similar idea introduced by Kyung et al48 and Chu et al49 to investigate
the asymptotic properties of our estimators. The assumptions of our model are listed in Appendix A.1. The assumptions
(S.1) to (S.6) are similar to those used in Mardia et al47 (detailed proof is shown in Appendix A.2). Together with the
assumption (S.7), they yield a central limit theorem for l′(𝝓) and convergence in probability of l′′(𝝓). To be specific, under
the assumptions (S.1) to (S.7), for any 𝝓 ∈ Rp × Θ, as n → ∞, we have n−1/2l′(𝝓) →d N(0, J(𝝓)) and n−1l′′(𝝓) →p −J(𝝓),
where J(𝝓) = diag{J(𝜷), J(𝜽)} (The detailed proof is shown in Appendix A.3). This result demonstrates the asymptotic
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behavior of the first and second derivatives of the log-likelihood function. It also shows that the maximum likelihood
estimator is

√
n consistent and asymptotically normal.

Let 𝜽0 = (𝜽T
10,𝜽

T
20)T denote the true values of 𝜽. Without loss of generality, 𝜽10 is a s × 1 vector whose components

are not zero and 𝜽20 is the (R + 1 − s) remaining components of 𝜽0, so that 𝜽20 = 0. Let 𝜷0 denote the true values of 𝜷.
Therefore, the true values of 𝝓 can be written as 𝝓0 = (𝝓T

10,𝝓
T
20)T , where 𝝓10 = (𝜷T

0 ,𝜽
T
10)T and 𝝓20 = 𝜽20 = 0. In a similar

manner, 𝝓 can be decomposed as 𝝓 = (𝝓T
1 ,𝝓

T
2 )T = (𝜷T ,𝜽T

1 ,𝝓
T
2 )T = (𝜷T ,𝜽T

1 ,𝜽
T
2 )T . For the penalized log-likelihood func-

tion given in Equation (3), let l(𝝓1) ≡ l
{
(𝝓1, 0)T} and lp(𝝓1) ≡ lp

{
(𝝓1, 0)T} denote the log-likelihood and the penalized

log-likelihood of the first s components of 𝝓 (ie, by letting 𝝓2 = 0 and 𝝓 = (𝝓T
1 , 0T)T), respectively.

In the web appendix A, we showed that the penalized estimators enjoy the oracle property and are asymptotically
normally distributed.52 In particular, we first showed that there exists a local maximizer in a

√
n neighborhood with

�̂�2 = 0, suggesting that the penalized likelihood estimator can identify the true model with probability tending to 1. To
be specific, under the assumptions (S.1) to (S.8) given in Appendix A.1, we have (i) there exists a local maximizer �̂� =(
�̂�1, 0

)T of lp(𝝓1) such that �̂�1 is
√

n consistent for𝝓10 and (ii) lp
(
(𝝓T

1 , 0)T) = max||𝝓2||≤Mn−1∕2
lp
(
(𝝓T

1 ,𝝓
T
2 )T) for any𝝓1 satisfying

||𝝓1 − 𝝓10|| ≤ Mn−1/2 and some constant M > 0. We further showed that the penalized maximum likelihood estimators
for those nonzero parameters are asymptotically normally distributed. To be specific, under the assumptions (S.1) to (S.8)
given in Appendix A.1, we have

a.
√

n(�̂� − 𝜷0)→dN(0, J(𝜷0)−1)
b.

√
nJ(𝜽10)

[
�̂�1 − 𝜽10 +

𝜆n
n

J(𝜽10)−1h(𝜽10)
]
→dN(0, J(𝜽10)),

where J(𝜽10) consists of the first s × s upper-left submatrix of J(𝜽) and h(𝜽10) = (𝜔p+1sgn(𝜃1
10), 𝜔p+2sgn(𝜃2

10),… ,

𝜔p+ssgn(𝜃s
10)) with 𝜃

j
10 being the jth element in vector 𝜽10. It is straightforward to see that

√
nJ(𝜽10)(�̂�1 −

𝜽10)→dN(0, J(𝜽10)), to the first order.

3 SIMULATIONS

Simulation studies are conducted to evaluate the performance of KLMM-AL, where for each genomic region, we con-
sider two kernels (ie, the linear kernel and the polynomial kernel with degree 2). We further compare the performances
of KLMM-AL with other commonly used methods (ie, gBLUP,15 MultiBLUP,8 and MKLMM9). In the first scenario, we
compare the performance of KLMM-AL with parameters estimated by both EM (denoted by KLMM-AL-EM) and NR
with local approximation (denoted by KLMM-AL-NR). In the second scenario, we compare the performance of our
KLMM-AL-NR method with the other three existing methods by increasing the number of noise genetic regions. In the
third scenario, we evaluate the performance of our method when epistasis (ie, interaction effects) are present. For both
MultiBLUP and MKLMM, we use the default settings. As the number of regions for MKLMM are determined empiri-
cally, we considered three regions (denoted by MKLMM3) and eight regions (denoted by MKLMM8) for MKLMM in our
simulations. For all the simulation studies, we consider two analytical techniques for KLMM-AL method: (i) only addi-
tive effects (ie, the linear kernels) are considered (denoted by KLMM-AL-Lin) and (ii) both additive effects (ie, the linear
kernels) and interaction effects (ie, polynomial kernel with degree 2) are considered (denoted by KLMM-AL-Adapt).

In all simulation studies, we use the training samples to build predictive models and use the testing samples to eval-
uate their performance. The Pearson correlation and the mean square error (MSE) in the testing samples are calculated
for KLMM-AL, gBLUP, MultiBLUP, and MKLMM. For the KLMM-AL method, we also calculate the chances of selecting
predictive and nonpredictive genomic regions. To mimic the distribution of minor allele frequencies and linkage disequi-
librium in the real human genome, in all simulations described below the genomic data are drawn from chromosome 1
of the 1000 Genome Project. In particular, we first cut the genome into regions with each being 75 Kb, and then randomly
select these genomic regions for each replicate. For all the simulations considered below, three regions are selected as
causal for each type of effects. Within each causal region, 20% of the genetic variants are set causal.

3.1 Simulation I: The comparison between KLMM-AL-NR and KLMM-AL-EM

In this section, we compare the performance of KLMM-AL-NR with KLMM-AL-EM to assess whether the local approx-
imation can achieve similar accuracy as the EM algorithm. In particular, we want to evaluate the impact of sample
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size on the local approximation. For this set of simulations, we only consider the additive effects and simulate the
phenotypes as:

Yi =
3∑

r=1

Nr∑
j=1

Zrj𝛽rjIrj + 𝜖i, 𝜖i ∼ N(0, 𝜎2), 𝛽rj ∼ N(0, 𝜎2
r ), (13)

where Nr is the total number of genetic variants on the rth causal region, and Zrj and 𝛽rj, respectively, represent the
genotype and its effect of the jth genetic variant on the rth causal region. Irj is an indicator with Irj = 1 if the jth marker
on the rth causal region is causal and Irj = 0 otherwise. We set P(Irj) = 20%. The first, second, and third causal regions
account for 6.7%, 13.3%, and 20% of the heritability, respectively. In total, all causal genetic variants account for 40% of
the heritability.

While keeping the testing sample size being 100, we gradually change the training sample size from 50 to 500. For each
sample size setting, we consider two and seven noise regions (ie, total number of regions is five and 10, respectively). We
generate 500 replicates for each setting. For each replicate, we use training samples to train the model and use the testing
data to assess its performance. We calculate the Pearson correlations and MSEs between the predicted values calculated
from KLMM-AL-NR and those from KLMM-AL-EM to assess the consistency between these methods. We further report
the selection consistency between these two methods in terms of the chances of correctly identifying causal and noncausal
genomic regions.

The consistencies between the predicted values for KLMM-AL-NR and KLMM-AL-EM are summarized in Figure 1.
As the training sample size increases, the consistencies between the two methods increase. Indeed, when the training
sample size equal to 500, regardless of the number of noise regions, the mean of Pearson correlation between the predicted
values derived from these two methods is almost 1, and the mean of MSEs is very close to zero. The selection consistencies
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F I G U R E 1 The impact of sample size on local approximation for the KLMM-AL method [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


1318 WEN and LU

KLMM-AL-Lin KLMM-AL-Adapt

No. Sample Alla Trueb Alla Trueb

The number of regions = 5

50 0.812 0.785 0.821 0.925

100 0.791 0.762 0.827 0.911

200 0.811 0.844 0.805 0.915

500 0.863 0.962 0.841 0.955

The number of regions = 10

50 0.840 0.768 0.871 0.936

100 0.825 0.727 0.871 0.889

200 0.814 0.829 0.859 0.915

500 0.851 0.955 0.873 0.957

aThe chances of KLMM-AL-EM and KLMM-AL-NR selecting the same
regions.
bThe chances of KLMM-AL-EM and KLMM-AL-NR selecting the same
causal regions.

T A B L E 1 The consistency of selection between KLMM-AL-EM
and KLMM-AL-NR

between the two methods are summarized in Table 1. On average, the chances of selecting the same regions from both
methods is 84% and the chances of selecting the same causal regions from both methods is 88%, indicating the selection
consistency between KLMM-AL-EM and KLMM-AL-NR is relatively high. Indeed, when the training sample size is 500,
the chances of both methods selecting the same causal regions are above 95% (Table 1). This suggests that when the
training sample size is sufficiently large, KLMM-AL-NR performs very similar to KLMM-AL-EM with regard to both the
predicted values and the selected regions. KLMM-AL-EM can be computationally demanding when the sample size is
large due to the selection of tuning parameters (ie, 𝜆). Because for each value of 𝜆, an EM algorithm is used to estimate
the parameters as detailed in Section 2.3.1. The KLMM-AL-NR, on the other hand, can efficiently calculate the entire
regularization pathways using the LAR algorithm (Section 2.3.2), which can substantially improve the computational
efficiencies, especially when both the sample size and the number of genomic regions are large. KLMM-AL-NR can
asymptotically achieve similar performance as KLMM-AL-EM, and thus we recommend to use KLMM-AL-NR when the
training sample size is relatively large.

3.2 Simulation II: The impact of the number of noise regions

In this set of simulations, we compare the performance of KLMM-AL with three commonly used methods (ie, gBLUP,
MultiBLUP, and MKLMM) by gradually increasing the number of noise genomic regions from two (ie, the total number of
regions is five) to 97 (ie, the total number of regions is 100). As shown in Section 3.1, KLMM-AL-NR and KLMM-AL-EM
achieve similar performance. Because KLMM-AL-EM requires a substantial amount of computational time, we only focus
on KLMM-AL-NR in this set of simulations. Similar to Section 3.1, we only consider additive effects and simulate the
phenotypes using Equation (13). For each given number of noise regions, we vary the total heritability and allow different
regions contributing differently to the total heritability. Specifically, for the rth causal genomic region, it accounts for rh∕6
of the heritability, where r = 1, 2, 3, and h changes from 20% to 80%. The sample sizes for training samples and testing
samples are all set to be 500. Based on 500 Monte Carlo replicates, we calculate the Pearson correlations and MSEs from
the testing samples and report the proportions of correctly identifying causal and noncausal genomic regions for the
KLMM-AL method.

The Pearson correlations and MSEs are shown in Figure 2. The computational time is shown in Appendix Figure
S1. Among all the scenarios considered, KLMM-AL performs better than the other methods. As the number of noise
regions increases, the performance of gBLUP drops significantly. While MultiBLUP and MKLMM tend to be more robust
compared with gBLUP by allowing for different effect sizes of genetic regions, their performances also drop as the number
of noise regions increases, especially when the heritability is high. For the KLMM-AL methods, regardless of whether
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F I G U R E 2 The impact of the number of noise genomic regions on Pearson correlations and mean square errors calculated from the
testing samples [Colour figure can be viewed at wileyonlinelibrary.com]

we use one kernel (ie, KLMM-AL-Lin) or two kernels per region (ie, KLMM-AL-Adapt), the performances are relatively
robust as the number of noise regions increases. This indicates excluding noise regions cannot only improve prediction
accuracy, but also improve the robustness of the prediction model.

In practice, the underlying disease model is usually unknown in advance, and thus a model that can adaptively choose
the right kernels and achieve accurate prediction is preferred. With regard to variable selection, KLMM-AL-Lin has high
sensitivity and specificity (Table 2). KLMM-AL-Adapt may misclassify the predictive effects of the variants located on
those causal regions (ie, by selecting the polynomial kernel rather than the linear kernel), but this misclassification rate
becomes negligible as the heritability increases. Nevertheless, KLMM-AL-Adapt has a similar proportion of correctly
identifying the predictive regions as KLMM-AL-Lin, and its specificity is also very similar to that of KLMM-AL-Lin
(Table 2). Moreover, while it is expected that the KLMM-AL-Lin performs better than KLMM-AL-Adapt as the kernel it
uses represents the true disease model, the differences of prediction accuracies between these two methods are very small
(Figure 2).

3.3 Simulation III: The impact of epistasis

In this set of simulations, we evaluate the performance of KLMM-AL-NR when interaction effects are present. We fur-
ther compare its performance with gBLUP, MultiBLUP, and MKLMM. When simulating phenotypes, we consider both
the additive effects (denoted by Y av) and the interaction effects (denoted by Y int). The phenotypes Y are simulated as a
weighted linear combination of these genetic effects,

Y = Y av + Y int + e, e ∼ N(0, 𝜎2I). (14)

http://wileyonlinelibrary.com
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KLMM-AL-Lin KLMM-AL-Adapt

No. Regions TPa FPb TP-Linc FP-Lind TP-Inte FP-Intf TP-Bothg

The heritability = 20%

5 0.798 0.023 0.594 0.013 0.206 0.013 0.786

10 0.769 0.011 0.564 0.008 0.201 0.007 0.757

20 0.745 0.011 0.570 0.009 0.176 0.007 0.736

50 0.692 0.007 0.519 0.006 0.172 0.006 0.685

100 0.641 0.005 0.450 0.012 0.144 0.007 0.582

The heritability = 40%

5 0.944 0.007 0.818 0.003 0.130 0.003 0.939

10 0.940 0.008 0.812 0.006 0.138 0.003 0.935

20 0.933 0.006 0.820 0.006 0.130 0.002 0.934

50 0.926 0.006 0.812 0.004 0.130 0.003 0.922

100 0.903 0.003 0.765 0.011 0.143 0.003 0.870

The heritability = 60%

5 0.937 0.000 0.886 0.000 0.044 0.000 0.922

10 0.936 0.002 0.897 0.001 0.045 0.000 0.932

20 0.936 0.002 0.897 0.002 0.048 0.000 0.934

50 0.934 0.003 0.881 0.003 0.057 0.001 0.921

100 0.950 0.002 0.890 0.004 0.081 0.001 0.932

The heritability = 80%

5 0.919 0.002 0.910 0.002 0.010 0.000 0.915

10 0.909 0.000 0.907 0.000 0.012 0.000 0.913

20 0.908 0.000 0.902 0.000 0.011 0.000 0.907

50 0.899 0.000 0.893 0.000 0.016 0.000 0.899

100 0.939 0.000 0.907 0.001 0.022 0.000 0.914

aThe chances of selecting causal regions for KLMM-AL-Lin.
bThe chances of selecting noise regions for KLMM-AL-Lin.
cThe chances of selecting causal regions with the additive effects by the linear kernel for KLMM-AL-Adapt.
dThe chances of selecting noise regions by the linear kernel for KLMM-AL-Adapt.
eThe chances of selecting causal regions with the additive effects by the polynomial kernel for KLMM-AL-Adapt.
f The chances of selecting noise regions by the polynomial kernel for KLMM-AL-Adapt.
gThe chances of selecting causal regions by any kernels for KLMM-AL-Adapt.

T A B L E 2 The chances of
selecting predictive/noise regions as
the number of noise regions
increases

Similar to the above simulations, we simulate three causal regions for each effect. We use Zr,av (pr,av) and Zr,int
(pr,int) to respectively denote the causal variants (the number of causal variants) on the rth causal region for the additive
and interaction effects. We use hav and hint to denote the heritability accounted by the additive and interaction effects,
respectively.

For the additive effects, Equation (13) is used. We can show that Equation (13) is equivalent to

Y av ∼ N(0,
3∑
r

Kr,av𝜎
2
r,av), where Kr,av =

Zr,avZT
r,av

pr,av
. (15)

Therefore, Equation (15) is used to generate the additive effects. To allow various regions having different effect sizes,
the rth causal region (r = 1, 2, 3) with the additive effects accounts for r × hav∕6 of the heritability.
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F I G U R E 3 The impact of
epistasis: the total heritability is
60% [Colour figure can be viewed
at wileyonlinelibrary.com]
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For the interaction effect, we only consider the local pairwise interactions (ie, interactions within the causal region),
and simulate the interaction effects as Y int ∼ N(0,

∑3
r Kr,int𝜎

2
r,int), where Kr,int is used to capture the interaction effects

from the rth causal region. For the pairwise interactions, we set Kr,int = Kr,av◦Kr,av with ◦ being Hadamard product. To
allow different effect sizes, the rth causal region (r = 1, 2, 3 ) with the interaction effects accounts for r × hint∕6 of the
heritability.

For all the simulations, we fix the total heritability to be 60% (ie, hav + hint = 0.6) and gradually change the proportion
of heritability accounted by the interaction effects (ie, hint increases from 0 to 0.6). We also vary the total number of
noise regions (ie, 2, 7, 17, 47, and 97). We set both the training and testing sample sizes being 500. We generate 500
replicates for each setting and evaluate the performances based on Pearson correlations and MSEs calculated from the
testing samples.

The prediction accuracy when the total number of regions is 50 is summarized in Figure 3. The remaining results
are summarized in Figure S2. KLMM-AL works better than the other methods under all the settings considered, and
this indicates teasing out the noise genomic regions can improve prediction accuracy. Comparing KLMM-AL-Adapt with
KLMM-AL-Lin, as expected, the KLMM-AL-Adapt performs better than KLMM-AL-Lin when the interaction effects
account for a substantial amount of heritability. What we have noticed is that even when the interaction effects are
absent, KLMM-AL-Adapt achieves very similar performance to that of KLMM-AL-Lin. With regard to variable selection,
KLMM-AL-Lin has high sensitivity and specificity for selecting the prediction genomic regions (on average, sensitiv-
ity = 88% and specificity = 99.4%). Although the chances of correctly selecting the genomic regions with the interaction
(additive) effects vary with their effect sizes and KLMM-AL-Adapt may misclassify different kinds of effects (Table 3),
the sensitivity and specificity of selecting the prediction genomic regions for KLMM-AL-Adapt remains high (on aver-
age, sensitivity = 87% and specificity = 99.4%). We consider the robust performance of KLMM-AL-Adapt with respect to
both prediction accuracy and region selection is important. This is because the underlying disease model is unknown in
advance, and an algorithm that can adaptively choose the kernel functions close to the underlying genetic effects has the
potential to improve the prediction accuracy. Indeed, as shown in Figure 3, KLMM-AL-Adapt attains better performance
than all the other methods and outperforms KLMM-AL-Lin when the interaction effects are large.

4 REAL-DATA APPLICATION

We analyze the whole-genome sequencing data from the ADNI using the proposed method with both the linear kernel and
the polynomial kernel of degree 2 to capture both the additive and interaction effects (ie, KLMM-AL-Adapt). We further
compare our method with commonly used methods, including gBLUP,15 MultiBLUP,8 and MKLMM.9 For MultiBLUP

http://wileyonlinelibrary.com
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KLMM-AL-Lin KLMM-AL-Adapt

Hera TPb FPc TP-Lind FP-Line TP-Intf FP-Intg TP-Eh TPi FPj

The total number of noise regions = 3

0.6 0.949 0.008 N/A 0.003 0.664 0.002 0.664 0.892 0.005

0.4 0.848 0.010 0.657 0.002 0.597 0.005 0.627 0.817 0.008

0.2 0.817 0.008 0.827 0.005 0.370 0.000 0.598 0.789 0.005

0.0 0.937 0.000 0.886 0.000 N/A 0.000 0.886 0.922 0.000

The total number of noise regions = 7

0.6 0.950 0.007 N/A 0.004 0.667 0.001 0.667 0.899 0.004

0.4 0.847 0.010 0.666 0.007 0.600 0.003 0.633 0.841 0.010

0.2 0.819 0.008 0.839 0.006 0.381 0.003 0.610 0.807 0.009

0.0 0.936 0.002 0.897 0.001 N/A 0.000 0.897 0.932 0.002

The total number of noise regions = 17

0.6 0.943 0.003 N/A 0.002 0.666 0.001 0.666 0.902 0.003

0.4 0.843 0.008 0.652 0.006 0.606 0.003 0.629 0.841 0.009

0.2 0.821 0.008 0.835 0.005 0.400 0.003 0.618 0.806 0.008

0.0 0.936 0.002 0.897 0.002 N/A 0.000 0.897 0.934 0.003

The total number of noise regions = 47

0.6 0.938 0.004 N/A 0.003 0.667 0.001 0.667 0.908 0.004

0.4 0.844 0.008 0.628 0.007 0.629 0.002 0.628 0.846 0.009

0.2 0.809 0.004 0.824 0.005 0.405 0.002 0.614 0.813 0.006

0.0 0.934 0.003 0.881 0.003 N/A 0.001 0.881 0.921 0.003

The total number of noise regions = 97

0.6 0.932 0.003 N/A 0.006 0.686 0.002 0.686 0.902 0.008

0.4 0.803 0.005 0.621 0.009 0.608 0.002 0.614 0.829 0.011

0.2 0.817 0.005 0.786 0.007 0.370 0.002 0.578 0.784 0.008

0.0 0.950 0.002 0.890 0.004 N/A 0.001 0.890 0.932 0.005

aHeritability explained by the interaction effects.
bThe chances of selecting causal regions for KLMM-AL-Lin.
cThe chances of selecting noise regions for KLMM-AL-Lin.
dThe chances of selecting causal regions with the additive effects by the linear kernel for KLMM-AL-Adapt.
eThe chances of selecting noise regions by the linear kernel for KLMM-AL-Adapt.
f The chances of selecting causal regions with the interaction effects by the polynomial kernel for
KLMM-AL-Adapt.
gThe chances of selecting noise regions by the polynomial kernel for KLMM-AL-Adapt.
hThe chances of selecting causal regions by kernels representing the underlying effects for KLMM-AL-Adapt.
iThe chances of selecting causal regions by any kernels for KLMM-AL-Adapt.
jThe chances of selecting noise regions by any kernels for KLMM-AL-Adapt.

T A B L E 3 The chances of
selecting predictive/noise genomic
regions when epistasis is present

and MKLMM, we use the default settings. As the number of regions is preselected for MKLMM, we use both three and
eight regions for these analyses.

The ADNI is a longitudinal study designed to assess clinical, imaging, genetic, and biomarkers through the process
of normal aging to Alzheimer’s disease (AD).40 Study participants were followed and assessed over time to investigate
the pathology of AD. DNA samples were obtained and analyzed using Illumina's non-CLIA whole-genome sequencing.
Imaging data (eg, MR imaging and PET imaging) and clinical data (eg, cognitive tests) were also collected at each visit.
For our analyses, we are interested in using sequencing data to predict PET-imaging outcomes, FDG, and AV-45 scans,
which were performed on all newly enrolled subjects within 2 weeks of the baseline in-clinic assessments.
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We annotated the genetic variants based on GRch37 assembly and included a total of 310 genes that have been pre-
viously reported to be associated with AD. The complete genes included in our analyses are listed in Table S1. In total,
344,337 single-nucleotide variants are included in the final analyses and the distribution of the minor allele frequencies
for these variants are shown in Figure S3. To avoid overfitting, we randomly selected 80 subjects to serve as the testing
samples and used the remaining samples to build the model (ie, 422 and 551 samples for AV-45 and FDG, respectively).
We calculated the Pearson correlations and the MSEs based on the testing samples. To avoid the chance findings, we
repeated this process 100 times.

The results for AV-45 and FDG are shown in Figure 4 and Figure 5, respectively. For both AV-45 and FDG, the Pear-
son correlations of the KLMM-AL are higher and MSEs of KLMM-AL are smaller than the other methods, suggesting
KLMM-AL achieves better prediction accuracy than the existing methods. This indicates that excluding noise genes from
the prediction can improve prediction accuracy. The proportion of each gene being selected by KLMM-AL for AV-45 and

F I G U R E 4 Pearson
correlations and mean square
errors calculated from the
testing samples for AV-45
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 5 Pearson
correlations and mean square
errors calculated from the
testing samples for FDG [Colour
figure can be viewed at
wileyonlinelibrary.com]
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FDG is summarized in Table S1. The KLMM-AL achieves robust performance with regard to the variable selection. The
APOE gene on chromosome 19, a well-known risk factor for AD, has been selected 100% for both AV-45 and FDG. Only the
linear kernel is chosen for APOE, suggesting the variants on APOE having the additive effects. No other genes are selected
for AV-45. For FDG, among the 310 genes, in addition to APOE, only four genes have been selected. The fibroblast growth
factor (FGF-1) located on chromosome 5 has been selected about 63% times, and only the linear kernel (ie, the additive
effect) has been selected. FGF-1 promotes the survival of neurons, and it was reported that serum FGF-1 in patients with
AD was higher than in patients without AD.50 It was also reported that variants within FGF-1 were associated with AD
in Chinese Han population.51 The ADRA1A gene located on chromosome 8 has been selected 15%, and only the additive
effects have been selected. It has been shown that mutations in ADRA1A can lead to early onset of AD.53 The NTRK1
gene located at chromosome 1 has been selected 24%, and only the interaction effects have been selected. Counts et al54

found that NTRK1 expression was reduced in basal forebrain cholinergic neurons through the postmortem examination
of the brains of patients with early stage AD. It has been found that rs6336 on NTRK1 is associated with early-onset AD
in Italian population.55 The gene CHRNA4 located at chromosome 20 has been selected 14% with both the linear effects
and interaction effects. It was reported that genetic polymorphisms in the CHRNA4 gene were associated with AD.56,57

5 DISCUSSION

We have proposed a multikernel linear mixed model with adaptive lasso for predicting phenotypes using
high-dimensional genomic data. We have developed two algorithms to estimate the parameters for our model, and have
further established the asymptotic properties of the estimators (ie, the asymptotic behavior of the maximum penalized
likelihood estimators under LMM when the outcome vector is a single observation obtained from a multivariate normal
distribution). The KLMM-AL can (i) account for heterogeneous effect sizes for different genomic regions by specifying
multiple random effects, (ii) capture various types of genetic effects (eg, the additive and pairwise interactions) by using
multiple kernel functions per genomic region, and (iii) adaptively and efficiently select predictive regions using the theory
built from this work. The software implementing this algorithm can be downloaded from https://github.com/YaluWen/
KLMMALPackage.

Through simulation studies, we have demonstrated that the computationally efficient algorithm (ie, KLMM-AL-NR)
designed to obtain the approximate penalized maximum likelihood estimators can have similar performance as the exact
method (ie, KLMM-AL-EM) with respect to both prediction accuracy and predictive region selection. This makes our
model easily scale up to large-scale genetic studies. We also demonstrated that the KLMM-AL is robust against the num-
ber of noise regions (Figure 2), whereas the prediction accuracies for other methods drop to various degrees as the number
of noise regions increases. Although both MKLMM and MultiBLUP allow different regions contributing differently to the
outcomes and build an empirical selection process (ie, selecting the regions based on empirical criteria), neither of them
can achieve the same level of prediction accuracy as the KLMM-AL partially due to the lack of theoretical justification
of selecting predictive regions. Indeed, MKLMM lets the users to determine the number of regions and its performance
depends on the users' decision (Figures 2-5). From simulations, we also show that the data adaptive version of KLMM-AL
(ie, KLMM-AL-Adapt) can capture potential interaction effects (Figures 3 and S2) and has relatively high sensitivities
and specificities of selecting predictive genomic regions (Tables 2 and 3). Moreover, KLMM-AL-Adpat can also provide
some insights into the types of genetic effects (eg, the additvie or pairwise interactions). Although we demonstrate the
KLMM-AL-Adapt with only two kernels per region (ie, the linear kernel and the polynomial kernel), it can easily incor-
porate other kernels to capture more complicated interactions. For example, the saturate pathway kernel9 can also be
implemented into KLMM-AL-Adapt. Through the real-data application, we further demonstrate that the selection of our
algorithm is consistent (Table S1) and it can achieve better prediction performance than the existing methods (Figures 4
and 5).

The work introduced in this article focuses on the continuous phenotype with normal distribution. The analysis of
binary outcomes within mixed effect model framework can be challenging, as the parameter inference is intractable.9 Sev-
eral recent studies have demonstrated that treating binary outcomes as if they were continuous using LMM can achieve
reasonable predictions.8,9 Though easy to implement, it would be interesting to study, within the framework of general-
ized LMM, other link functions (eg, logit and log) for the prediction of outcomes with various distributions (eg, binary and
Poisson) in the future. Similar to many existing parametric models,8,9 our method depends on the distributional assump-
tions that can be violated in practice (eg, model misspecification and outcomes from heavy tailed distributions). It could

https://github.com/YaluWen/KLMMALPackage
https://github.com/YaluWen/KLMMALPackage
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of great importance to incorporate robust modeling and variable selection methods (an extensive review of such methods
can be found in Wu et al58) into our proposed framework, and this will be a future direction of our research.
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